One of the key benefits of GM crops, according to the industry and its supporters, is higher yields through plants engineered to tolerate herbicides or resist pests. The industry is now working on crops that can better tolerate heat and drought—key attributes in a hotter, drier world. But recently, a couple of studies have cast doubt on the actual and potential ability of some GM crops to increase yield. One study, by Barney Gordon, a professor of agronomy at Kansas State University, caught the eye of Geoffrey Lean, the environmental editor at The Independent in London. Lean’s story, which ran under the headline “Exposed: The Great GM Crops Myth,” began: “Genetic modification actually cuts the productivity of crops, an authoritative new study shows.” Professor Gordon called the story a “gross misrepresentation” of his research, which looked specifically at soybeans’ response to manganese in very high-yielding conditions.

Another study, called “Failure to Yield,” released by the Union of Concerned Scientists in April 2009, concluded that yields of herbicide-tolerant GM corn and soybeans in the U.S. had not gone up in the thirteen years those crops have been grown commercially. (This study was based on Department of Agriculture data and looked only at yield in U.S. crops.)

Monsanto posted a refutation of both Lean’s story and the Union of Concerned Scientists’ study on its Web site. The refutation contained a link to a response by Gordon, which sent readers to a page on the Web site of the International Plant Nutrition Institute—which is associated with the Nutrients for Life Foundation, which is supported by Monsanto.

“If you don’t trust the industry, and you don’t want to use the Brookes and Barfoot study because it was commissioned by the industry, you could look at their sources or look at what emerged from independent academics,” said Robert Paarlberg, author of Starved for Science: How Biotechnology is Being Kept Out of Africa. “But you’d almost have to go country by country.”

The problem is that the industry sources tend to be industry-funded, while the independent science on these matters is limited and focuses mostly on cotton, not on food crops. To get a full picture of global adoption, a reporter would have to go—as Paarlberg says—“country by country.” Such an undertaking would be nearly impossible.

Early last year, the secretary general of the United Nations, Ban Ki-moon, visited St. Louis. He gave a speech at a local university, which was billed as discussion on food but meandered into the various places where food intersects with energy, climate, and the economy. St. Louis might seem like an odd locale for such a talk, but it happens to be Monsanto’s hometown. On his daylong visit to Missouri, the company’s suburban headquarters was Ban’s first stop.

The United Nations and its Food and Agriculture Organization have no formal position on biotech crops, nor do they keep data on global adoption. But after the global food crisis of 2008 sparked riots around the world, Ban became especially interested in biotech’s potential. Last fall he convened a retreat on Long Island, inviting representatives from the biotech industry, government, and academia to discuss the role biotech crops might play in feeding the world’s growing population—and what role, if any, the U.N. could have. One of the projects the group explored was the creation of a global “information hub” that would list the policies and guidelines that individual countries have implemented. But it wouldn’t include anything on global adoption. For that, “there’s no one go-to place,” Eva Busza, a principal officer in Ban’s strategic planning unit, said at the time.

Just the ISAAA.

Georgina Gustin writes about all things food-related for the Metro section of the St. Louis Post-Dispatch. When not in the newsroom or tracking farmers in the hills, she's usually in her kitchen, ruining dinner.